9,815 research outputs found

    Parametrization of the Driven Betatron Oscillation

    Full text link
    An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl

    First Principles Study of Work Functions of Double Wall Carbon Nanotubes

    Full text link
    Using first-principles density functional calculations, we investigated work functions (WFs) of thin double-walled nanotubes (DWNTs) with outer tube diameters ranging from 1nm to 1.5nm. The results indicate that work function change within this diameter range can be up to 0.5 eV, even for DWNTs with same outer diameter. This is in contrast with single-walled nanotubes (SWNTs) which show negligible WF change for diameters larger than 1nm. We explain the WF change and related charge redistribution in DWNTs using charge equilibration model (CEM). The predicted work function variation of DWNTs indicates a potential difficulty in their nanoelectronic device applications.Comment: 11 pages, 3 figures, to appear as rapid communication on Physical Review

    Signatures of LCDM substructure in tidal debris

    Full text link
    In the past decade, surveys of the stellar component of the Galaxy have revealed a number of streams from tidally disrupted dwarf galaxies and globular clusters. Simulations of hierarchical structure formation in LCDM cosmologies predict that the dark matter halo of a galaxy like the Milky Way contains hundreds of subhalos with masses of ~10^8 solar masses and greater, and it has been suggested that the existence of coherent tidal streams is incompatible with the expected abundance of substructure. We investigate the effects of dark matter substructure on tidal streams by simulating the disruption of a self-gravitating satellite on a wide range of orbits in different host models both with and without substructure. We find that the halo shape and the specific orbital path more strongly determine the overall degree of disruption of the satellite than does the presence or absence of substructure, i.e., the changes in the large-scale properties of the tidal debris due to substructure are small compared to variations in the debris from different orbits in a smooth potential. Substructure typically leads to an increase in the degree of clumpiness of the tidal debris in sky projection, and in some cases a more compact distribution in line-of-sight velocity. Substructure also leads to differences in the location of sections of debris compared to the results of the smooth halo model, which may have important implications for the interpretation of observed tidal streams. A unique signature of the presence of substructure in the halo which may be detectable by upcoming surveys is identified. We conclude, however, that predicted levels of substructure are consistent with a detection of a coherent tidal stream from a dwarf galaxy.Comment: 15 pages, 13 figures, accepted for publication in ApJ. Matches accepted versio

    Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb2_{2}Te3_{3} superlattices

    Get PDF
    Femtosecond dynamics of coherent optical phonons in GeTe/Sb2_{2}Te3_{3} superlattices (SLs), a new class of semiconductor SLs with three different states, have been investigated by using a reflection-type pump-probe technique at various lattice temperatures. The time-resolved transient reflectivity (TR) obtained in as-grown SLs exhibits the coherent A1_{1} optical modes at 5.10 THz and 3.78 THz, while only the single A1_{1} mode at 3.68 THz is observed in annealed SLs. The decay rate of the A1_{1} mode in annealed SLs is strongly temperature dependent, while that in as-grown SLs is not temperature dependent. This result indicates that the damping of the coherent A1_{1} phonons in amorphous SLs is governed by the phonon-defect (vacancy) scattering rather than the anharmonic phonon-phonon coupling.Comment: 5 pages, 5 figure

    Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon

    Get PDF
    Recently, atomic ensemble and single photons were successfully entangled by using collective enhancement [D. N. Matsukevich, \textit{et al.}, Phys. Rev. Lett. \textbf{95}, 040405(2005).], where atomic internal states and photonic polarization states were correlated in nonlocal manner. Here we experimentally clarified that in an ensemble of atoms and a photon system, there also exists an entanglement concerned with spatial degrees of freedom. Generation of higher-dimensional entanglement between remote atomic ensemble and an application to condensed matter physics are also discussed.Comment: 5 pages, 3 figure
    corecore